
 Flat Minima Generalize for Low-rank Matrix Recovery 

 Many behaviors empirically observed in deep neural networks still lack satisfactory explanation. For 
 example, a fundamental question is: How does an overparameterized neural network avoid overfitting 
 to its training data, and generalize to unseen data? Characterizing the double-descent property for 
 these networks in recent years has shed some light on this question. However, empirical evidence 
 suggests that generalization depends on  which  zero-loss  local minimum is attained during training. The 
 shape of the training loss around a local minimum seems to strongly impact the model's performance: 
 “Flat” local minima---around which the loss grows slowly—appear to generalize well. Clarifying this 
 phenomenon can help explain generalization properties, which still largely remain a mystery. 

 We took steps in this direction by focusing on the simplest class 
 of overparameterized nonlinear models, those arising in  low-rank 
 matrix recovery  . We analyze the following key models: 
 (i) overparametrized matrix sensing and bilinear sensing, (ii) 
 robust Principal Component Analysis, (iii) covariance matrix 
 estimation, (iv) single hidden layer neural networks with quadratic 
 activation functions, and (v) matrix completion. We prove that flat 
 minima (measured by the trace of the Hessian, a notion of 
 average curvature),  exactly recover  the ground truth  under 
 standard statistical assumptions, for the first four models. For matrix completion, we obtain weak 
 recovery guarantees, but in simulation always observe exact recovery as well. These results extend to 
 the case where the given information or measurements are noisy. 

 From a broader practical perspective, these results suggest (1) a theoretical basis for favoring 
 methods that bias iterates towards flat solutions, (2) use of Hessian trace as a reasonable regularizer 
 for some learning tasks. This work opens up new research questions; e.g., the landscape properties 
 we examined are algorithm-agnostic, a future direction is to pair these findings with analysis of 
 common deep net training algorithms to understand the interplay between the loss landscape and 
 algorithmic implicit bias. 
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